Delete Node in a BST
LeetCode August - Day 31
Problem Statement
Given a root node reference of a BST and a key, delete the node with the given key in the BST. Return the root node reference (possibly updated) of the BST.
Basically, the deletion can be divided into two stages:
- Search for a node to remove.
- If the node is found, delete the node.
Follow up: Can you solve it with time complexity O(height of tree)?
Example 1:
Input: root = [5,3,6,2,4,null,7], key = 3
Output: [5,4,6,2,null,null,7]
Explanation: Given key to delete is 3. So we find the node with value 3 and delete it.
One valid answer is [5,4,6,2,null,null,7], shown in the above BST.
Please notice that another valid answer is [5,2,6,null,4,null,7] and it's also accepted.
Example 2:

Input: root = [5,3,6,2,4,null,7], key = 0
Output: [5,3,6,2,4,null,7]
Explanation: The tree does not contain a node with value = 0.
Example 3:
Input: root = [], key = 0
Output: []
Constraints:
- The number of nodes in the tree is in the range [0, 104].
<= Node.val <=- Each node has a unique value.
- root is a valid binary search tree.
<= key <=
Inputs, Outputs, Constraints & Exceptions
- I: - TreeNode(val, left, right) {root}
- number {key}
- O: TreeNode
- C: none other than the above
- E: - root is null
- key is not in the tree
- root.val === key
Code
/**
* @param {TreeNode} node
* @return {number}
*/
const successor = node => {
node = node.right;
while (node.left) {
node = node.left;
}
return node.val;
}
/**
* @param {TreeNode} node
* @return {number}
*/
const predecessor = node => {
node = node.left;
while (node.right) {
node = node.right;
}
return node.val;
}
/**
* @param {TreeNode} root
* @param {number} key
* @return {TreeNode}
*/
var deleteNode = function(root, key) {
if (!root) {
return null;
}
if (root.val < key) {
root.right = deleteNode(root.right, key);
}
else if (root.val > key) {
root.left = deleteNode(root.left, key);
}
else {
if (root.left) {
root.val = predecessor(root);
root.left = deleteNode(root.left, root.val);
}
else if (root.right) {
root.val = successor(root);
root.right = deleteNode(root.right, root.val);
}
else {
root = null;
}
}
return root;
};
Time complexity: O(H)
- where H is the height of the tree
Space complexity: O(H)